The form of the highest $\sigma $-exponent of a linear system
Differencialʹnye uravneniâ, Tome 19 (1983) no. 2, pp. 359-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1983_19_2_a17,
     author = {N. A. Izobov and E. A. Barabanov},
     title = {The form of the highest $\sigma $-exponent of a linear system},
     journal = {Differencialʹnye uravneni\^a},
     pages = {359--362},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1983_19_2_a17/}
}
TY  - JOUR
AU  - N. A. Izobov
AU  - E. A. Barabanov
TI  - The form of the highest $\sigma $-exponent of a linear system
JO  - Differencialʹnye uravneniâ
PY  - 1983
SP  - 359
EP  - 362
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1983_19_2_a17/
LA  - ru
ID  - DE_1983_19_2_a17
ER  - 
%0 Journal Article
%A N. A. Izobov
%A E. A. Barabanov
%T The form of the highest $\sigma $-exponent of a linear system
%J Differencialʹnye uravneniâ
%D 1983
%P 359-362
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1983_19_2_a17/
%G ru
%F DE_1983_19_2_a17
N. A. Izobov; E. A. Barabanov. The form of the highest $\sigma $-exponent of a linear system. Differencialʹnye uravneniâ, Tome 19 (1983) no. 2, pp. 359-362. http://geodesic.mathdoc.fr/item/DE_1983_19_2_a17/