A priori estimates for solutions of quasilinear elliptic equations of arbitrary order
Differencialʹnye uravneniâ, Tome 19 (1983) no. 1, pp. 101-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DE_1983_19_1_a14,
     author = {S. I. Pokhozhaev},
     title = {A priori estimates for solutions of quasilinear elliptic equations of arbitrary order},
     journal = {Differencialʹnye uravneni\^a},
     pages = {101--110},
     year = {1983},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1983_19_1_a14/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - A priori estimates for solutions of quasilinear elliptic equations of arbitrary order
JO  - Differencialʹnye uravneniâ
PY  - 1983
SP  - 101
EP  - 110
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DE_1983_19_1_a14/
LA  - ru
ID  - DE_1983_19_1_a14
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T A priori estimates for solutions of quasilinear elliptic equations of arbitrary order
%J Differencialʹnye uravneniâ
%D 1983
%P 101-110
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/DE_1983_19_1_a14/
%G ru
%F DE_1983_19_1_a14
S. I. Pokhozhaev. A priori estimates for solutions of quasilinear elliptic equations of arbitrary order. Differencialʹnye uravneniâ, Tome 19 (1983) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/DE_1983_19_1_a14/