Asymptotic behavior of the spectral function for ordinary differential operators defined by a binomial operation on an interval
Differencialʹnye uravneniâ, Tome 18 (1982) no. 9, pp. 1475-1480.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1982_18_9_a0,
     author = {\`E Kadelburg},
     title = {Asymptotic behavior of the spectral function for ordinary differential operators defined by a binomial operation on an interval},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1475--1480},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1982_18_9_a0/}
}
TY  - JOUR
AU  - È Kadelburg
TI  - Asymptotic behavior of the spectral function for ordinary differential operators defined by a binomial operation on an interval
JO  - Differencialʹnye uravneniâ
PY  - 1982
SP  - 1475
EP  - 1480
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1982_18_9_a0/
LA  - ru
ID  - DE_1982_18_9_a0
ER  - 
%0 Journal Article
%A È Kadelburg
%T Asymptotic behavior of the spectral function for ordinary differential operators defined by a binomial operation on an interval
%J Differencialʹnye uravneniâ
%D 1982
%P 1475-1480
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1982_18_9_a0/
%G ru
%F DE_1982_18_9_a0
È Kadelburg. Asymptotic behavior of the spectral function for ordinary differential operators defined by a binomial operation on an interval. Differencialʹnye uravneniâ, Tome 18 (1982) no. 9, pp. 1475-1480. http://geodesic.mathdoc.fr/item/DE_1982_18_9_a0/