The rate of convergence for the method of nets for a Sturm--Liouville problem with a generalized differential Hermitian operator
Differencialʹnye uravneniâ, Tome 18 (1982) no. 7, pp. 1167-1172.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1982_18_7_a8,
     author = {S. G. Gocheva and V. L. Makarov},
     title = {The rate of convergence for the method of nets for a {Sturm--Liouville} problem with a generalized differential {Hermitian} operator},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1167--1172},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/}
}
TY  - JOUR
AU  - S. G. Gocheva
AU  - V. L. Makarov
TI  - The rate of convergence for the method of nets for a Sturm--Liouville problem with a generalized differential Hermitian operator
JO  - Differencialʹnye uravneniâ
PY  - 1982
SP  - 1167
EP  - 1172
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/
LA  - ru
ID  - DE_1982_18_7_a8
ER  - 
%0 Journal Article
%A S. G. Gocheva
%A V. L. Makarov
%T The rate of convergence for the method of nets for a Sturm--Liouville problem with a generalized differential Hermitian operator
%J Differencialʹnye uravneniâ
%D 1982
%P 1167-1172
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/
%G ru
%F DE_1982_18_7_a8
S. G. Gocheva; V. L. Makarov. The rate of convergence for the method of nets for a Sturm--Liouville problem with a generalized differential Hermitian operator. Differencialʹnye uravneniâ, Tome 18 (1982) no. 7, pp. 1167-1172. http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/