The rate of convergence for the method of nets for a Sturm–Liouville problem with a generalized differential Hermitian operator
Differencialʹnye uravneniâ, Tome 18 (1982) no. 7, pp. 1167-1172
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1982_18_7_a8,
author = {S. G. Gocheva and V. L. Makarov},
title = {The rate of convergence for the method of nets for a {Sturm{\textendash}Liouville} problem with a generalized differential {Hermitian} operator},
journal = {Differencialʹnye uravneni\^a},
pages = {1167--1172},
year = {1982},
volume = {18},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/}
}
TY - JOUR AU - S. G. Gocheva AU - V. L. Makarov TI - The rate of convergence for the method of nets for a Sturm–Liouville problem with a generalized differential Hermitian operator JO - Differencialʹnye uravneniâ PY - 1982 SP - 1167 EP - 1172 VL - 18 IS - 7 UR - http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/ LA - ru ID - DE_1982_18_7_a8 ER -
%0 Journal Article %A S. G. Gocheva %A V. L. Makarov %T The rate of convergence for the method of nets for a Sturm–Liouville problem with a generalized differential Hermitian operator %J Differencialʹnye uravneniâ %D 1982 %P 1167-1172 %V 18 %N 7 %U http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/ %G ru %F DE_1982_18_7_a8
S. G. Gocheva; V. L. Makarov. The rate of convergence for the method of nets for a Sturm–Liouville problem with a generalized differential Hermitian operator. Differencialʹnye uravneniâ, Tome 18 (1982) no. 7, pp. 1167-1172. http://geodesic.mathdoc.fr/item/DE_1982_18_7_a8/