The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator
Differencialʹnye uravneniâ, Tome 18 (1982) no. 12, pp. 2098-2126.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1982_18_12_a3,
     author = {V. A. Il'in and V. V. Tikhomirov},
     title = {The basis property of {Riesz} means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator},
     journal = {Differencialʹnye uravneni\^a},
     pages = {2098--2126},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - V. V. Tikhomirov
TI  - The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator
JO  - Differencialʹnye uravneniâ
PY  - 1982
SP  - 2098
EP  - 2126
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/
LA  - ru
ID  - DE_1982_18_12_a3
ER  - 
%0 Journal Article
%A V. A. Il'in
%A V. V. Tikhomirov
%T The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator
%J Differencialʹnye uravneniâ
%D 1982
%P 2098-2126
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/
%G ru
%F DE_1982_18_12_a3
V. A. Il'in; V. V. Tikhomirov. The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator. Differencialʹnye uravneniâ, Tome 18 (1982) no. 12, pp. 2098-2126. http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/