The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator
Differencialʹnye uravneniâ, Tome 18 (1982) no. 12, pp. 2098-2126
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1982_18_12_a3,
author = {V. A. Il'in and V. V. Tikhomirov},
title = {The basis property of {Riesz} means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator},
journal = {Differencialʹnye uravneni\^a},
pages = {2098--2126},
year = {1982},
volume = {18},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/}
}
TY - JOUR AU - V. A. Il'in AU - V. V. Tikhomirov TI - The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator JO - Differencialʹnye uravneniâ PY - 1982 SP - 2098 EP - 2126 VL - 18 IS - 12 UR - http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/ LA - ru ID - DE_1982_18_12_a3 ER -
%0 Journal Article %A V. A. Il'in %A V. V. Tikhomirov %T The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator %J Differencialʹnye uravneniâ %D 1982 %P 2098-2126 %V 18 %N 12 %U http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/ %G ru %F DE_1982_18_12_a3
V. A. Il'in; V. V. Tikhomirov. The basis property of Riesz means of spectral decompositions corresponding to an $n$th-order ordinary nonselfadjoint differential operator. Differencialʹnye uravneniâ, Tome 18 (1982) no. 12, pp. 2098-2126. http://geodesic.mathdoc.fr/item/DE_1982_18_12_a3/