Variational problem for a nonregular equation and the uniqueness of the classical solution
Differencialʹnye uravneniâ, Tome 18 (1982) no. 11, pp. 1907-1917.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1982_18_11_a8,
     author = {G. G. Kazaryan},
     title = {Variational problem for a nonregular equation and the uniqueness of the classical solution},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1907--1917},
     publisher = {mathdoc},
     volume = {18},
     number = {11},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1982_18_11_a8/}
}
TY  - JOUR
AU  - G. G. Kazaryan
TI  - Variational problem for a nonregular equation and the uniqueness of the classical solution
JO  - Differencialʹnye uravneniâ
PY  - 1982
SP  - 1907
EP  - 1917
VL  - 18
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1982_18_11_a8/
LA  - ru
ID  - DE_1982_18_11_a8
ER  - 
%0 Journal Article
%A G. G. Kazaryan
%T Variational problem for a nonregular equation and the uniqueness of the classical solution
%J Differencialʹnye uravneniâ
%D 1982
%P 1907-1917
%V 18
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1982_18_11_a8/
%G ru
%F DE_1982_18_11_a8
G. G. Kazaryan. Variational problem for a nonregular equation and the uniqueness of the classical solution. Differencialʹnye uravneniâ, Tome 18 (1982) no. 11, pp. 1907-1917. http://geodesic.mathdoc.fr/item/DE_1982_18_11_a8/