Construction of solutions of a third-order nonlinear equation that has given properties at infinity
Differencialʹnye uravneniâ, Tome 17 (1981) no. 6, pp. 1041-1049.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1981_17_6_a9,
     author = {T. K. Shemjakina},
     title = {Construction of solutions of a third-order nonlinear equation that has given properties at infinity},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1041--1049},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1981_17_6_a9/}
}
TY  - JOUR
AU  - T. K. Shemjakina
TI  - Construction of solutions of a third-order nonlinear equation that has given properties at infinity
JO  - Differencialʹnye uravneniâ
PY  - 1981
SP  - 1041
EP  - 1049
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1981_17_6_a9/
LA  - ru
ID  - DE_1981_17_6_a9
ER  - 
%0 Journal Article
%A T. K. Shemjakina
%T Construction of solutions of a third-order nonlinear equation that has given properties at infinity
%J Differencialʹnye uravneniâ
%D 1981
%P 1041-1049
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1981_17_6_a9/
%G ru
%F DE_1981_17_6_a9
T. K. Shemjakina. Construction of solutions of a third-order nonlinear equation that has given properties at infinity. Differencialʹnye uravneniâ, Tome 17 (1981) no. 6, pp. 1041-1049. http://geodesic.mathdoc.fr/item/DE_1981_17_6_a9/