Application of the contour integral method to the study of ill-posed problems for second-order parabolic systems
Differencialʹnye uravneniâ, Tome 16 (1980) no. 6, pp. 1091-1096.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1980_16_6_a10,
     author = {I. S. Zeinalov},
     title = {Application of the contour integral method to the study of ill-posed problems for second-order parabolic systems},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1091--1096},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1980_16_6_a10/}
}
TY  - JOUR
AU  - I. S. Zeinalov
TI  - Application of the contour integral method to the study of ill-posed problems for second-order parabolic systems
JO  - Differencialʹnye uravneniâ
PY  - 1980
SP  - 1091
EP  - 1096
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1980_16_6_a10/
LA  - ru
ID  - DE_1980_16_6_a10
ER  - 
%0 Journal Article
%A I. S. Zeinalov
%T Application of the contour integral method to the study of ill-posed problems for second-order parabolic systems
%J Differencialʹnye uravneniâ
%D 1980
%P 1091-1096
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1980_16_6_a10/
%G ru
%F DE_1980_16_6_a10
I. S. Zeinalov. Application of the contour integral method to the study of ill-posed problems for second-order parabolic systems. Differencialʹnye uravneniâ, Tome 16 (1980) no. 6, pp. 1091-1096. http://geodesic.mathdoc.fr/item/DE_1980_16_6_a10/