Stability of an arbitrary system with respect to perturbations that are small in the sense of $C^1$
Differencialʹnye uravneniâ, Tome 16 (1980) no. 10, pp. 1891-1892.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1980_16_10_a20,
     author = {V. A. Pliss},
     title = {Stability of an arbitrary system with respect to perturbations that are small in the sense of $C^1$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1891--1892},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1980_16_10_a20/}
}
TY  - JOUR
AU  - V. A. Pliss
TI  - Stability of an arbitrary system with respect to perturbations that are small in the sense of $C^1$
JO  - Differencialʹnye uravneniâ
PY  - 1980
SP  - 1891
EP  - 1892
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1980_16_10_a20/
LA  - ru
ID  - DE_1980_16_10_a20
ER  - 
%0 Journal Article
%A V. A. Pliss
%T Stability of an arbitrary system with respect to perturbations that are small in the sense of $C^1$
%J Differencialʹnye uravneniâ
%D 1980
%P 1891-1892
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1980_16_10_a20/
%G ru
%F DE_1980_16_10_a20
V. A. Pliss. Stability of an arbitrary system with respect to perturbations that are small in the sense of $C^1$. Differencialʹnye uravneniâ, Tome 16 (1980) no. 10, pp. 1891-1892. http://geodesic.mathdoc.fr/item/DE_1980_16_10_a20/