Existence of closed trajectories in the neighborhood of an invariant torus
Differencialʹnye uravneniâ, Tome 15 (1979) no. 9, pp. 1620-1631.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1979_15_9_a9,
     author = {V. E. Chernyshev},
     title = {Existence of closed trajectories in the neighborhood of an invariant torus},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1620--1631},
     publisher = {mathdoc},
     volume = {15},
     number = {9},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1979_15_9_a9/}
}
TY  - JOUR
AU  - V. E. Chernyshev
TI  - Existence of closed trajectories in the neighborhood of an invariant torus
JO  - Differencialʹnye uravneniâ
PY  - 1979
SP  - 1620
EP  - 1631
VL  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1979_15_9_a9/
LA  - ru
ID  - DE_1979_15_9_a9
ER  - 
%0 Journal Article
%A V. E. Chernyshev
%T Existence of closed trajectories in the neighborhood of an invariant torus
%J Differencialʹnye uravneniâ
%D 1979
%P 1620-1631
%V 15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1979_15_9_a9/
%G ru
%F DE_1979_15_9_a9
V. E. Chernyshev. Existence of closed trajectories in the neighborhood of an invariant torus. Differencialʹnye uravneniâ, Tome 15 (1979) no. 9, pp. 1620-1631. http://geodesic.mathdoc.fr/item/DE_1979_15_9_a9/