Classical solvability of the first boundary value problem for a parabolic equation in the case when the data of the problem depend continuously on the time
Differencialʹnye uravneniâ, Tome 15 (1979) no. 8, pp. 1518-1519
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1979_15_8_a16,
author = {V. P. Anosov},
title = {Classical solvability of the first boundary value problem for a parabolic equation in the case when the data of the problem depend continuously on the time},
journal = {Differencialʹnye uravneni\^a},
pages = {1518--1519},
year = {1979},
volume = {15},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1979_15_8_a16/}
}
TY - JOUR AU - V. P. Anosov TI - Classical solvability of the first boundary value problem for a parabolic equation in the case when the data of the problem depend continuously on the time JO - Differencialʹnye uravneniâ PY - 1979 SP - 1518 EP - 1519 VL - 15 IS - 8 UR - http://geodesic.mathdoc.fr/item/DE_1979_15_8_a16/ LA - ru ID - DE_1979_15_8_a16 ER -
%0 Journal Article %A V. P. Anosov %T Classical solvability of the first boundary value problem for a parabolic equation in the case when the data of the problem depend continuously on the time %J Differencialʹnye uravneniâ %D 1979 %P 1518-1519 %V 15 %N 8 %U http://geodesic.mathdoc.fr/item/DE_1979_15_8_a16/ %G ru %F DE_1979_15_8_a16
V. P. Anosov. Classical solvability of the first boundary value problem for a parabolic equation in the case when the data of the problem depend continuously on the time. Differencialʹnye uravneniâ, Tome 15 (1979) no. 8, pp. 1518-1519. http://geodesic.mathdoc.fr/item/DE_1979_15_8_a16/