The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator
Differencialʹnye uravneniâ, Tome 15 (1979) no. 7, pp. 1307-1317.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1979_15_7_a15,
     author = {L. I. Kamynin and B. N. Khimchenko},
     title = {The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1307--1317},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/}
}
TY  - JOUR
AU  - L. I. Kamynin
AU  - B. N. Khimchenko
TI  - The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator
JO  - Differencialʹnye uravneniâ
PY  - 1979
SP  - 1307
EP  - 1317
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/
LA  - ru
ID  - DE_1979_15_7_a15
ER  - 
%0 Journal Article
%A L. I. Kamynin
%A B. N. Khimchenko
%T The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator
%J Differencialʹnye uravneniâ
%D 1979
%P 1307-1317
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/
%G ru
%F DE_1979_15_7_a15
L. I. Kamynin; B. N. Khimchenko. The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator. Differencialʹnye uravneniâ, Tome 15 (1979) no. 7, pp. 1307-1317. http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/