Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1979_15_7_a15, author = {L. I. Kamynin and B. N. Khimchenko}, title = {The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator}, journal = {Differencialʹnye uravneni\^a}, pages = {1307--1317}, publisher = {mathdoc}, volume = {15}, number = {7}, year = {1979}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/} }
TY - JOUR AU - L. I. Kamynin AU - B. N. Khimchenko TI - The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator JO - Differencialʹnye uravneniâ PY - 1979 SP - 1307 EP - 1317 VL - 15 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/ LA - ru ID - DE_1979_15_7_a15 ER -
%0 Journal Article %A L. I. Kamynin %A B. N. Khimchenko %T The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator %J Differencialʹnye uravneniâ %D 1979 %P 1307-1317 %V 15 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/ %G ru %F DE_1979_15_7_a15
L. I. Kamynin; B. N. Khimchenko. The strict extremum principle for a $D-(\Phi ,\,\Omega )$-elliptically connected second-order operator. Differencialʹnye uravneniâ, Tome 15 (1979) no. 7, pp. 1307-1317. http://geodesic.mathdoc.fr/item/DE_1979_15_7_a15/