Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1979_15_7_a1, author = {V. A. Il'in and I. Jo}, title = {Uniform estimation of eigenfunctions and an upper bound on the number of eigenvalues of the {Sturm--Liouville} operator with a potential from the class $L^p$}, journal = {Differencialʹnye uravneni\^a}, pages = {1164--1174}, publisher = {mathdoc}, volume = {15}, number = {7}, year = {1979}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1979_15_7_a1/} }
TY - JOUR AU - V. A. Il'in AU - I. Jo TI - Uniform estimation of eigenfunctions and an upper bound on the number of eigenvalues of the Sturm--Liouville operator with a potential from the class $L^p$ JO - Differencialʹnye uravneniâ PY - 1979 SP - 1164 EP - 1174 VL - 15 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1979_15_7_a1/ LA - ru ID - DE_1979_15_7_a1 ER -
%0 Journal Article %A V. A. Il'in %A I. Jo %T Uniform estimation of eigenfunctions and an upper bound on the number of eigenvalues of the Sturm--Liouville operator with a potential from the class $L^p$ %J Differencialʹnye uravneniâ %D 1979 %P 1164-1174 %V 15 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1979_15_7_a1/ %G ru %F DE_1979_15_7_a1
V. A. Il'in; I. Jo. Uniform estimation of eigenfunctions and an upper bound on the number of eigenvalues of the Sturm--Liouville operator with a potential from the class $L^p$. Differencialʹnye uravneniâ, Tome 15 (1979) no. 7, pp. 1164-1174. http://geodesic.mathdoc.fr/item/DE_1979_15_7_a1/