Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1979_15_4_a14, author = {V. M. Favorin}, title = {Behavior of the {Green} function of the third exterior boundary value problem for the two-dimensional {Helmholtz} equation $\Delta u+k^2u=f$, as $k\to0$}, journal = {Differencialʹnye uravneni\^a}, pages = {709--716}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {1979}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/} }
TY - JOUR AU - V. M. Favorin TI - Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$ JO - Differencialʹnye uravneniâ PY - 1979 SP - 709 EP - 716 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/ LA - ru ID - DE_1979_15_4_a14 ER -
%0 Journal Article %A V. M. Favorin %T Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$ %J Differencialʹnye uravneniâ %D 1979 %P 709-716 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/ %G ru %F DE_1979_15_4_a14
V. M. Favorin. Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$. Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 709-716. http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/