Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$
Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 709-716
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1979_15_4_a14,
author = {V. M. Favorin},
title = {Behavior of the {Green} function of the third exterior boundary value problem for the two-dimensional {Helmholtz} equation $\Delta u+k^2u=f$, as $k\to0$},
journal = {Differencialʹnye uravneni\^a},
pages = {709--716},
year = {1979},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/}
}
TY - JOUR AU - V. M. Favorin TI - Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$ JO - Differencialʹnye uravneniâ PY - 1979 SP - 709 EP - 716 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/ LA - ru ID - DE_1979_15_4_a14 ER -
%0 Journal Article %A V. M. Favorin %T Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$ %J Differencialʹnye uravneniâ %D 1979 %P 709-716 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/ %G ru %F DE_1979_15_4_a14
V. M. Favorin. Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$. Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 709-716. http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/