Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$
Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 709-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1979_15_4_a14,
     author = {V. M. Favorin},
     title = {Behavior of the {Green} function of the third exterior boundary value problem for the two-dimensional {Helmholtz} equation $\Delta u+k^2u=f$, as $k\to0$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {709--716},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/}
}
TY  - JOUR
AU  - V. M. Favorin
TI  - Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$
JO  - Differencialʹnye uravneniâ
PY  - 1979
SP  - 709
EP  - 716
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/
LA  - ru
ID  - DE_1979_15_4_a14
ER  - 
%0 Journal Article
%A V. M. Favorin
%T Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$
%J Differencialʹnye uravneniâ
%D 1979
%P 709-716
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/
%G ru
%F DE_1979_15_4_a14
V. M. Favorin. Behavior of the Green function of the third exterior boundary value problem for the two-dimensional Helmholtz equation $\Delta u+k^2u=f$, as $k\to0$. Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 709-716. http://geodesic.mathdoc.fr/item/DE_1979_15_4_a14/