Solution of the Dirichlet problem for the Laplace equation, and structure of its Green function in the case of a plane with $N$~elliptic cuts
Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 704-708.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1979_15_4_a13,
     author = {Z. M. Narkun},
     title = {Solution of the {Dirichlet} problem for the {Laplace} equation, and structure of its {Green} function in the case of a plane with $N$~elliptic cuts},
     journal = {Differencialʹnye uravneni\^a},
     pages = {704--708},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1979_15_4_a13/}
}
TY  - JOUR
AU  - Z. M. Narkun
TI  - Solution of the Dirichlet problem for the Laplace equation, and structure of its Green function in the case of a plane with $N$~elliptic cuts
JO  - Differencialʹnye uravneniâ
PY  - 1979
SP  - 704
EP  - 708
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1979_15_4_a13/
LA  - ru
ID  - DE_1979_15_4_a13
ER  - 
%0 Journal Article
%A Z. M. Narkun
%T Solution of the Dirichlet problem for the Laplace equation, and structure of its Green function in the case of a plane with $N$~elliptic cuts
%J Differencialʹnye uravneniâ
%D 1979
%P 704-708
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1979_15_4_a13/
%G ru
%F DE_1979_15_4_a13
Z. M. Narkun. Solution of the Dirichlet problem for the Laplace equation, and structure of its Green function in the case of a plane with $N$~elliptic cuts. Differencialʹnye uravneniâ, Tome 15 (1979) no. 4, pp. 704-708. http://geodesic.mathdoc.fr/item/DE_1979_15_4_a13/