Asymptotic stability in nonlinear systems, and the critical case of $2m$ purely imaginary roots in the theory of the stability of motion
Differencialʹnye uravneniâ, Tome 14 (1978) no. 9, pp. 1689-1691.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1978_14_9_a18,
     author = {O. V. Anashkin},
     title = {Asymptotic stability in nonlinear systems, and the critical case of $2m$ purely imaginary roots in the theory of the stability of motion},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1689--1691},
     publisher = {mathdoc},
     volume = {14},
     number = {9},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1978_14_9_a18/}
}
TY  - JOUR
AU  - O. V. Anashkin
TI  - Asymptotic stability in nonlinear systems, and the critical case of $2m$ purely imaginary roots in the theory of the stability of motion
JO  - Differencialʹnye uravneniâ
PY  - 1978
SP  - 1689
EP  - 1691
VL  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1978_14_9_a18/
LA  - ru
ID  - DE_1978_14_9_a18
ER  - 
%0 Journal Article
%A O. V. Anashkin
%T Asymptotic stability in nonlinear systems, and the critical case of $2m$ purely imaginary roots in the theory of the stability of motion
%J Differencialʹnye uravneniâ
%D 1978
%P 1689-1691
%V 14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1978_14_9_a18/
%G ru
%F DE_1978_14_9_a18
O. V. Anashkin. Asymptotic stability in nonlinear systems, and the critical case of $2m$ purely imaginary roots in the theory of the stability of motion. Differencialʹnye uravneniâ, Tome 14 (1978) no. 9, pp. 1689-1691. http://geodesic.mathdoc.fr/item/DE_1978_14_9_a18/