The absence of real multipliers for an $n$-dimensional periodic system of order $4m+2$
Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1581-1587.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1977_13_9_a3,
     author = {N. A. Izobov},
     title = {The absence of real multipliers for an $n$-dimensional periodic system of order $4m+2$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1581--1587},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1977_13_9_a3/}
}
TY  - JOUR
AU  - N. A. Izobov
TI  - The absence of real multipliers for an $n$-dimensional periodic system of order $4m+2$
JO  - Differencialʹnye uravneniâ
PY  - 1977
SP  - 1581
EP  - 1587
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1977_13_9_a3/
LA  - ru
ID  - DE_1977_13_9_a3
ER  - 
%0 Journal Article
%A N. A. Izobov
%T The absence of real multipliers for an $n$-dimensional periodic system of order $4m+2$
%J Differencialʹnye uravneniâ
%D 1977
%P 1581-1587
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1977_13_9_a3/
%G ru
%F DE_1977_13_9_a3
N. A. Izobov. The absence of real multipliers for an $n$-dimensional periodic system of order $4m+2$. Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1581-1587. http://geodesic.mathdoc.fr/item/DE_1977_13_9_a3/