The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$
Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1709-1712
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1977_13_9_a16,
author = {V. I. Wolman and Yu. A. Pampu},
title = {The {Riemann} function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$},
journal = {Differencialʹnye uravneni\^a},
pages = {1709--1712},
year = {1977},
volume = {13},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/}
}
TY - JOUR
AU - V. I. Wolman
AU - Yu. A. Pampu
TI - The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$
JO - Differencialʹnye uravneniâ
PY - 1977
SP - 1709
EP - 1712
VL - 13
IS - 9
UR - http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/
LA - ru
ID - DE_1977_13_9_a16
ER -
%0 Journal Article
%A V. I. Wolman
%A Yu. A. Pampu
%T The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$
%J Differencialʹnye uravneniâ
%D 1977
%P 1709-1712
%V 13
%N 9
%U http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/
%G ru
%F DE_1977_13_9_a16
V. I. Wolman; Yu. A. Pampu. The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$. Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1709-1712. http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/