The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$
Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1709-1712.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1977_13_9_a16,
     author = {V. I. Wolman and Yu. A. Pampu},
     title = {The {Riemann} function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1709--1712},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/}
}
TY  - JOUR
AU  - V. I. Wolman
AU  - Yu. A. Pampu
TI  - The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$
JO  - Differencialʹnye uravneniâ
PY  - 1977
SP  - 1709
EP  - 1712
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/
LA  - ru
ID  - DE_1977_13_9_a16
ER  - 
%0 Journal Article
%A V. I. Wolman
%A Yu. A. Pampu
%T The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$
%J Differencialʹnye uravneniâ
%D 1977
%P 1709-1712
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/
%G ru
%F DE_1977_13_9_a16
V. I. Wolman; Yu. A. Pampu. The Riemann function for the equation $\Delta u_m+\frac1r\cdot\frac{\partial u_m}{\partial r}+\bigl(1-\frac{m^2}{r^2}\bigr)u_m=0$. Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1709-1712. http://geodesic.mathdoc.fr/item/DE_1977_13_9_a16/