The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity
Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1678-1691
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1977_13_9_a13,
author = {O. N. Naida and A. G. Prudkovskii},
title = {The {WKB} method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity},
journal = {Differencialʹnye uravneni\^a},
pages = {1678--1691},
year = {1977},
volume = {13},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/}
}
TY - JOUR
AU - O. N. Naida
AU - A. G. Prudkovskii
TI - The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity
JO - Differencialʹnye uravneniâ
PY - 1977
SP - 1678
EP - 1691
VL - 13
IS - 9
UR - http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/
LA - ru
ID - DE_1977_13_9_a13
ER -
%0 Journal Article
%A O. N. Naida
%A A. G. Prudkovskii
%T The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity
%J Differencialʹnye uravneniâ
%D 1977
%P 1678-1691
%V 13
%N 9
%U http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/
%G ru
%F DE_1977_13_9_a13
O. N. Naida; A. G. Prudkovskii. The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity. Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1678-1691. http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/