The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity
Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1678-1691.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1977_13_9_a13,
     author = {O. N. Naida and A. G. Prudkovskii},
     title = {The {WKB} method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1678--1691},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/}
}
TY  - JOUR
AU  - O. N. Naida
AU  - A. G. Prudkovskii
TI  - The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity
JO  - Differencialʹnye uravneniâ
PY  - 1977
SP  - 1678
EP  - 1691
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/
LA  - ru
ID  - DE_1977_13_9_a13
ER  - 
%0 Journal Article
%A O. N. Naida
%A A. G. Prudkovskii
%T The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity
%J Differencialʹnye uravneniâ
%D 1977
%P 1678-1691
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/
%G ru
%F DE_1977_13_9_a13
O. N. Naida; A. G. Prudkovskii. The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity. Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1678-1691. http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/