Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1977_13_9_a13, author = {O. N. Naida and A. G. Prudkovskii}, title = {The {WKB} method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity}, journal = {Differencialʹnye uravneni\^a}, pages = {1678--1691}, publisher = {mathdoc}, volume = {13}, number = {9}, year = {1977}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/} }
TY - JOUR AU - O. N. Naida AU - A. G. Prudkovskii TI - The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity JO - Differencialʹnye uravneniâ PY - 1977 SP - 1678 EP - 1691 VL - 13 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/ LA - ru ID - DE_1977_13_9_a13 ER -
%0 Journal Article %A O. N. Naida %A A. G. Prudkovskii %T The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity %J Differencialʹnye uravneniâ %D 1977 %P 1678-1691 %V 13 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/ %G ru %F DE_1977_13_9_a13
O. N. Naida; A. G. Prudkovskii. The WKB method for the system $(-{}ih\partial /\partial t+{\cal A}(x,t,-{}ih\partial /\partial x))U=0$ in the case of characteristics of variable multiplicity. Differencialʹnye uravneniâ, Tome 13 (1977) no. 9, pp. 1678-1691. http://geodesic.mathdoc.fr/item/DE_1977_13_9_a13/