The existence of a solution with small growth for biregular differential systems with random perturbation
Differencialʹnye uravneniâ, Tome 13 (1977) no. 11, pp. 2088-2092.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1977_13_11_a22,
     author = {I. N. Sergeev},
     title = {The existence of a solution with small growth for biregular differential systems with random perturbation},
     journal = {Differencialʹnye uravneni\^a},
     pages = {2088--2092},
     publisher = {mathdoc},
     volume = {13},
     number = {11},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1977_13_11_a22/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - The existence of a solution with small growth for biregular differential systems with random perturbation
JO  - Differencialʹnye uravneniâ
PY  - 1977
SP  - 2088
EP  - 2092
VL  - 13
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1977_13_11_a22/
LA  - ru
ID  - DE_1977_13_11_a22
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T The existence of a solution with small growth for biregular differential systems with random perturbation
%J Differencialʹnye uravneniâ
%D 1977
%P 2088-2092
%V 13
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1977_13_11_a22/
%G ru
%F DE_1977_13_11_a22
I. N. Sergeev. The existence of a solution with small growth for biregular differential systems with random perturbation. Differencialʹnye uravneniâ, Tome 13 (1977) no. 11, pp. 2088-2092. http://geodesic.mathdoc.fr/item/DE_1977_13_11_a22/