A non-improvable estimate of the interval of disconjugacy for a linear differential equation with coefficients that are bounded in $L_r$
Differencialʹnye uravneniâ, Tome 13 (1977) no. 10, pp. 1776-1786
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1977_13_10_a6,
author = {Yu. A. Melentsova},
title = {A non-improvable estimate of the interval of disconjugacy for a linear differential equation with coefficients that are bounded in $L_r$},
journal = {Differencialʹnye uravneni\^a},
pages = {1776--1786},
year = {1977},
volume = {13},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1977_13_10_a6/}
}
TY - JOUR AU - Yu. A. Melentsova TI - A non-improvable estimate of the interval of disconjugacy for a linear differential equation with coefficients that are bounded in $L_r$ JO - Differencialʹnye uravneniâ PY - 1977 SP - 1776 EP - 1786 VL - 13 IS - 10 UR - http://geodesic.mathdoc.fr/item/DE_1977_13_10_a6/ LA - ru ID - DE_1977_13_10_a6 ER -
%0 Journal Article %A Yu. A. Melentsova %T A non-improvable estimate of the interval of disconjugacy for a linear differential equation with coefficients that are bounded in $L_r$ %J Differencialʹnye uravneniâ %D 1977 %P 1776-1786 %V 13 %N 10 %U http://geodesic.mathdoc.fr/item/DE_1977_13_10_a6/ %G ru %F DE_1977_13_10_a6
Yu. A. Melentsova. A non-improvable estimate of the interval of disconjugacy for a linear differential equation with coefficients that are bounded in $L_r$. Differencialʹnye uravneniâ, Tome 13 (1977) no. 10, pp. 1776-1786. http://geodesic.mathdoc.fr/item/DE_1977_13_10_a6/