A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)
Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1705-1711.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1976_12_9_a17,
     author = {A. L. Teptin},
     title = {A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1705--1711},
     publisher = {mathdoc},
     volume = {12},
     number = {9},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/}
}
TY  - JOUR
AU  - A. L. Teptin
TI  - A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)
JO  - Differencialʹnye uravneniâ
PY  - 1976
SP  - 1705
EP  - 1711
VL  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/
LA  - ru
ID  - DE_1976_12_9_a17
ER  - 
%0 Journal Article
%A A. L. Teptin
%T A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)
%J Differencialʹnye uravneniâ
%D 1976
%P 1705-1711
%V 12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/
%G ru
%F DE_1976_12_9_a17
A. L. Teptin. A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$). Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1705-1711. http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/