A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)
Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1705-1711
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1976_12_9_a17,
author = {A. L. Teptin},
title = {A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)},
journal = {Differencialʹnye uravneni\^a},
pages = {1705--1711},
year = {1976},
volume = {12},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/}
}
TY - JOUR
AU - A. L. Teptin
TI - A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$)
JO - Differencialʹnye uravneniâ
PY - 1976
SP - 1705
EP - 1711
VL - 12
IS - 9
UR - http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/
LA - ru
ID - DE_1976_12_9_a17
ER -
A. L. Teptin. A two-sided numerical method of solving the boundary value problem $y^{'''}=f(t,y)$, $y(a_i)=c_i$ ($i=1,2,3$). Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1705-1711. http://geodesic.mathdoc.fr/item/DE_1976_12_9_a17/