Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations
Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1531-1540.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1976_12_9_a0,
     author = {E. S. Birger and G. A. Kalyabin},
     title = {Theory of {Weyl} circles in the case of a nonselfadjoint system of second order differential equations},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1531--1540},
     publisher = {mathdoc},
     volume = {12},
     number = {9},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/}
}
TY  - JOUR
AU  - E. S. Birger
AU  - G. A. Kalyabin
TI  - Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations
JO  - Differencialʹnye uravneniâ
PY  - 1976
SP  - 1531
EP  - 1540
VL  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/
LA  - ru
ID  - DE_1976_12_9_a0
ER  - 
%0 Journal Article
%A E. S. Birger
%A G. A. Kalyabin
%T Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations
%J Differencialʹnye uravneniâ
%D 1976
%P 1531-1540
%V 12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/
%G ru
%F DE_1976_12_9_a0
E. S. Birger; G. A. Kalyabin. Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations. Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1531-1540. http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/