Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations
Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1531-1540
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1976_12_9_a0,
author = {E. S. Birger and G. A. Kalyabin},
title = {Theory of {Weyl} circles in the case of a nonselfadjoint system of second order differential equations},
journal = {Differencialʹnye uravneni\^a},
pages = {1531--1540},
year = {1976},
volume = {12},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/}
}
TY - JOUR AU - E. S. Birger AU - G. A. Kalyabin TI - Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations JO - Differencialʹnye uravneniâ PY - 1976 SP - 1531 EP - 1540 VL - 12 IS - 9 UR - http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/ LA - ru ID - DE_1976_12_9_a0 ER -
E. S. Birger; G. A. Kalyabin. Theory of Weyl circles in the case of a nonselfadjoint system of second order differential equations. Differencialʹnye uravneniâ, Tome 12 (1976) no. 9, pp. 1531-1540. http://geodesic.mathdoc.fr/item/DE_1976_12_9_a0/