Dynamical systems with invariant Lebesgue measure on connected, closed and orientable surfaces
Differencialʹnye uravneniâ, Tome 12 (1976) no. 2, pp. 206-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1976_12_2_a2,
     author = {N. I. Gavrilov},
     title = {Dynamical systems with invariant {Lebesgue} measure on connected, closed and orientable surfaces},
     journal = {Differencialʹnye uravneni\^a},
     pages = {206--212},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1976_12_2_a2/}
}
TY  - JOUR
AU  - N. I. Gavrilov
TI  - Dynamical systems with invariant Lebesgue measure on connected, closed and orientable surfaces
JO  - Differencialʹnye uravneniâ
PY  - 1976
SP  - 206
EP  - 212
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1976_12_2_a2/
LA  - ru
ID  - DE_1976_12_2_a2
ER  - 
%0 Journal Article
%A N. I. Gavrilov
%T Dynamical systems with invariant Lebesgue measure on connected, closed and orientable surfaces
%J Differencialʹnye uravneniâ
%D 1976
%P 206-212
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1976_12_2_a2/
%G ru
%F DE_1976_12_2_a2
N. I. Gavrilov. Dynamical systems with invariant Lebesgue measure on connected, closed and orientable surfaces. Differencialʹnye uravneniâ, Tome 12 (1976) no. 2, pp. 206-212. http://geodesic.mathdoc.fr/item/DE_1976_12_2_a2/