A certain inverse problem for linear symmetric $t$-hyperbolicsystems with $n+1$ independent variables
Differencialʹnye uravneniâ, Tome 12 (1976) no. 1, pp. 15-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1976_12_1_a1,
     author = {S. P. Belinskii},
     title = {A certain inverse problem for linear symmetric $t$-hyperbolicsystems with $n+1$ independent variables},
     journal = {Differencialʹnye uravneni\^a},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1976_12_1_a1/}
}
TY  - JOUR
AU  - S. P. Belinskii
TI  - A certain inverse problem for linear symmetric $t$-hyperbolicsystems with $n+1$ independent variables
JO  - Differencialʹnye uravneniâ
PY  - 1976
SP  - 15
EP  - 23
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1976_12_1_a1/
LA  - ru
ID  - DE_1976_12_1_a1
ER  - 
%0 Journal Article
%A S. P. Belinskii
%T A certain inverse problem for linear symmetric $t$-hyperbolicsystems with $n+1$ independent variables
%J Differencialʹnye uravneniâ
%D 1976
%P 15-23
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1976_12_1_a1/
%G ru
%F DE_1976_12_1_a1
S. P. Belinskii. A certain inverse problem for linear symmetric $t$-hyperbolicsystems with $n+1$ independent variables. Differencialʹnye uravneniâ, Tome 12 (1976) no. 1, pp. 15-23. http://geodesic.mathdoc.fr/item/DE_1976_12_1_a1/