The membership in the class $W_2^1$ of the classical solution of the Dirichlet problem for an elliptic equation in an arbitrary (bounded or unbounded) domain
Differencialʹnye uravneniâ, Tome 12 (1976) no. 11, pp. 2064-2067
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1976_12_11_a17,
author = {V. M. Govorov},
title = {The membership in the class $W_2^1$ of the classical solution of the {Dirichlet} problem for an elliptic equation in an arbitrary (bounded or unbounded) domain},
journal = {Differencialʹnye uravneni\^a},
pages = {2064--2067},
year = {1976},
volume = {12},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1976_12_11_a17/}
}
TY - JOUR AU - V. M. Govorov TI - The membership in the class $W_2^1$ of the classical solution of the Dirichlet problem for an elliptic equation in an arbitrary (bounded or unbounded) domain JO - Differencialʹnye uravneniâ PY - 1976 SP - 2064 EP - 2067 VL - 12 IS - 11 UR - http://geodesic.mathdoc.fr/item/DE_1976_12_11_a17/ LA - ru ID - DE_1976_12_11_a17 ER -
%0 Journal Article %A V. M. Govorov %T The membership in the class $W_2^1$ of the classical solution of the Dirichlet problem for an elliptic equation in an arbitrary (bounded or unbounded) domain %J Differencialʹnye uravneniâ %D 1976 %P 2064-2067 %V 12 %N 11 %U http://geodesic.mathdoc.fr/item/DE_1976_12_11_a17/ %G ru %F DE_1976_12_11_a17
V. M. Govorov. The membership in the class $W_2^1$ of the classical solution of the Dirichlet problem for an elliptic equation in an arbitrary (bounded or unbounded) domain. Differencialʹnye uravneniâ, Tome 12 (1976) no. 11, pp. 2064-2067. http://geodesic.mathdoc.fr/item/DE_1976_12_11_a17/