The absolute and uniform convergence of Fourier series in the eigenfunctions of the operator of elasticity theory in an entire closed domain, and a substantiation of Fourier's method
Differencialʹnye uravneniâ, Tome 12 (1976) no. 10, pp. 1824-1831
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1976_12_10_a9,
author = {M. Ismatov},
title = {The absolute and uniform convergence of {Fourier} series in the eigenfunctions of the operator of elasticity theory in an entire closed domain, and a substantiation of {Fourier's} method},
journal = {Differencialʹnye uravneni\^a},
pages = {1824--1831},
year = {1976},
volume = {12},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1976_12_10_a9/}
}
TY - JOUR AU - M. Ismatov TI - The absolute and uniform convergence of Fourier series in the eigenfunctions of the operator of elasticity theory in an entire closed domain, and a substantiation of Fourier's method JO - Differencialʹnye uravneniâ PY - 1976 SP - 1824 EP - 1831 VL - 12 IS - 10 UR - http://geodesic.mathdoc.fr/item/DE_1976_12_10_a9/ LA - ru ID - DE_1976_12_10_a9 ER -
%0 Journal Article %A M. Ismatov %T The absolute and uniform convergence of Fourier series in the eigenfunctions of the operator of elasticity theory in an entire closed domain, and a substantiation of Fourier's method %J Differencialʹnye uravneniâ %D 1976 %P 1824-1831 %V 12 %N 10 %U http://geodesic.mathdoc.fr/item/DE_1976_12_10_a9/ %G ru %F DE_1976_12_10_a9
M. Ismatov. The absolute and uniform convergence of Fourier series in the eigenfunctions of the operator of elasticity theory in an entire closed domain, and a substantiation of Fourier's method. Differencialʹnye uravneniâ, Tome 12 (1976) no. 10, pp. 1824-1831. http://geodesic.mathdoc.fr/item/DE_1976_12_10_a9/