The $m$-fold completeness of the system of generalized eigen- and associated functions of a nonselfadjoint elliptic operator, and the membership of the classical eigen- and associated functions of the operator in the class $W_2^1$
Differencialʹnye uravneniâ, Tome 12 (1976) no. 10, pp. 1832-1841.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1976_12_10_a10,
     author = {N. M. Krukovskii},
     title = {The $m$-fold completeness of the system of generalized eigen- and associated functions of a nonselfadjoint elliptic operator, and the membership of the classical eigen- and associated functions of the operator in the class $W_2^1$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1832--1841},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1976_12_10_a10/}
}
TY  - JOUR
AU  - N. M. Krukovskii
TI  - The $m$-fold completeness of the system of generalized eigen- and associated functions of a nonselfadjoint elliptic operator, and the membership of the classical eigen- and associated functions of the operator in the class $W_2^1$
JO  - Differencialʹnye uravneniâ
PY  - 1976
SP  - 1832
EP  - 1841
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1976_12_10_a10/
LA  - ru
ID  - DE_1976_12_10_a10
ER  - 
%0 Journal Article
%A N. M. Krukovskii
%T The $m$-fold completeness of the system of generalized eigen- and associated functions of a nonselfadjoint elliptic operator, and the membership of the classical eigen- and associated functions of the operator in the class $W_2^1$
%J Differencialʹnye uravneniâ
%D 1976
%P 1832-1841
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1976_12_10_a10/
%G ru
%F DE_1976_12_10_a10
N. M. Krukovskii. The $m$-fold completeness of the system of generalized eigen- and associated functions of a nonselfadjoint elliptic operator, and the membership of the classical eigen- and associated functions of the operator in the class $W_2^1$. Differencialʹnye uravneniâ, Tome 12 (1976) no. 10, pp. 1832-1841. http://geodesic.mathdoc.fr/item/DE_1976_12_10_a10/