The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two
Differencialʹnye uravneniâ, Tome 11 (1975) no. 2, pp. 390-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1975_11_2_a23,
     author = {G. S. Rychkov},
     title = {The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two},
     journal = {Differencialʹnye uravneni\^a},
     pages = {390--391},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/}
}
TY  - JOUR
AU  - G. S. Rychkov
TI  - The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two
JO  - Differencialʹnye uravneniâ
PY  - 1975
SP  - 390
EP  - 391
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/
LA  - ru
ID  - DE_1975_11_2_a23
ER  - 
%0 Journal Article
%A G. S. Rychkov
%T The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two
%J Differencialʹnye uravneniâ
%D 1975
%P 390-391
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/
%G ru
%F DE_1975_11_2_a23
G. S. Rychkov. The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two. Differencialʹnye uravneniâ, Tome 11 (1975) no. 2, pp. 390-391. http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/