The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two
Differencialʹnye uravneniâ, Tome 11 (1975) no. 2, pp. 390-391
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1975_11_2_a23,
author = {G. S. Rychkov},
title = {The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two},
journal = {Differencialʹnye uravneni\^a},
pages = {390--391},
year = {1975},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/}
}
TY - JOUR
AU - G. S. Rychkov
TI - The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two
JO - Differencialʹnye uravneniâ
PY - 1975
SP - 390
EP - 391
VL - 11
IS - 2
UR - http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/
LA - ru
ID - DE_1975_11_2_a23
ER -
G. S. Rychkov. The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two. Differencialʹnye uravneniâ, Tome 11 (1975) no. 2, pp. 390-391. http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/