Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1975_11_2_a23, author = {G. S. Rychkov}, title = {The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two}, journal = {Differencialʹnye uravneni\^a}, pages = {390--391}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {1975}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/} }
TY - JOUR AU - G. S. Rychkov TI - The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two JO - Differencialʹnye uravneniâ PY - 1975 SP - 390 EP - 391 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/ LA - ru ID - DE_1975_11_2_a23 ER -
%0 Journal Article %A G. S. Rychkov %T The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two %J Differencialʹnye uravneniâ %D 1975 %P 390-391 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/ %G ru %F DE_1975_11_2_a23
G. S. Rychkov. The maximal number of limit cycles of the system $\dot{y}=-x$, $\dot{x}=y-\sum_{i=0}^2a_i x^{2i+1}$ is equal to two. Differencialʹnye uravneniâ, Tome 11 (1975) no. 2, pp. 390-391. http://geodesic.mathdoc.fr/item/DE_1975_11_2_a23/