The asymptotically $\omega$-periodic solutions of Volterra integral equations
Differencialʹnye uravneniâ, Tome 10 (1974) no. 6, pp. 1103-1110.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1974_10_6_a12,
     author = {V. F. Pulyaev and Z. B. Tsalyuk},
     title = {The asymptotically $\omega$-periodic solutions of {Volterra} integral equations},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1103--1110},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1974_10_6_a12/}
}
TY  - JOUR
AU  - V. F. Pulyaev
AU  - Z. B. Tsalyuk
TI  - The asymptotically $\omega$-periodic solutions of Volterra integral equations
JO  - Differencialʹnye uravneniâ
PY  - 1974
SP  - 1103
EP  - 1110
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1974_10_6_a12/
LA  - ru
ID  - DE_1974_10_6_a12
ER  - 
%0 Journal Article
%A V. F. Pulyaev
%A Z. B. Tsalyuk
%T The asymptotically $\omega$-periodic solutions of Volterra integral equations
%J Differencialʹnye uravneniâ
%D 1974
%P 1103-1110
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1974_10_6_a12/
%G ru
%F DE_1974_10_6_a12
V. F. Pulyaev; Z. B. Tsalyuk. The asymptotically $\omega$-periodic solutions of Volterra integral equations. Differencialʹnye uravneniâ, Tome 10 (1974) no. 6, pp. 1103-1110. http://geodesic.mathdoc.fr/item/DE_1974_10_6_a12/