Linear equations with integral separation that are everywhere dense in the set of all linear differential equations of order $n$
Differencialʹnye uravneniâ, Tome 9 (1973) no. 8, pp. 1417-1424
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1973_9_8_a5,
author = {Kamal Ahmed Dib},
title = {Linear equations with integral separation that are everywhere dense in the set of all linear differential equations of order $n$},
journal = {Differencialʹnye uravneni\^a},
pages = {1417--1424},
year = {1973},
volume = {9},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1973_9_8_a5/}
}
TY - JOUR AU - Kamal Ahmed Dib TI - Linear equations with integral separation that are everywhere dense in the set of all linear differential equations of order $n$ JO - Differencialʹnye uravneniâ PY - 1973 SP - 1417 EP - 1424 VL - 9 IS - 8 UR - http://geodesic.mathdoc.fr/item/DE_1973_9_8_a5/ LA - ru ID - DE_1973_9_8_a5 ER -
%0 Journal Article %A Kamal Ahmed Dib %T Linear equations with integral separation that are everywhere dense in the set of all linear differential equations of order $n$ %J Differencialʹnye uravneniâ %D 1973 %P 1417-1424 %V 9 %N 8 %U http://geodesic.mathdoc.fr/item/DE_1973_9_8_a5/ %G ru %F DE_1973_9_8_a5
Kamal Ahmed Dib. Linear equations with integral separation that are everywhere dense in the set of all linear differential equations of order $n$. Differencialʹnye uravneniâ, Tome 9 (1973) no. 8, pp. 1417-1424. http://geodesic.mathdoc.fr/item/DE_1973_9_8_a5/