The solvability of the Dirichlet problem for an elliptic equation of order $21$ in the class $W_2^{(2l)}$
Differencialʹnye uravneniâ, Tome 9 (1973) no. 11, pp. 2048-2051.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1973_9_11_a13,
     author = {\`E. M. Saak},
     title = {The solvability of the {Dirichlet} problem for an elliptic equation of order $21$ in the class $W_2^{(2l)}$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {2048--2051},
     publisher = {mathdoc},
     volume = {9},
     number = {11},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1973_9_11_a13/}
}
TY  - JOUR
AU  - È. M. Saak
TI  - The solvability of the Dirichlet problem for an elliptic equation of order $21$ in the class $W_2^{(2l)}$
JO  - Differencialʹnye uravneniâ
PY  - 1973
SP  - 2048
EP  - 2051
VL  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1973_9_11_a13/
LA  - ru
ID  - DE_1973_9_11_a13
ER  - 
%0 Journal Article
%A È. M. Saak
%T The solvability of the Dirichlet problem for an elliptic equation of order $21$ in the class $W_2^{(2l)}$
%J Differencialʹnye uravneniâ
%D 1973
%P 2048-2051
%V 9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1973_9_11_a13/
%G ru
%F DE_1973_9_11_a13
È. M. Saak. The solvability of the Dirichlet problem for an elliptic equation of order $21$ in the class $W_2^{(2l)}$. Differencialʹnye uravneniâ, Tome 9 (1973) no. 11, pp. 2048-2051. http://geodesic.mathdoc.fr/item/DE_1973_9_11_a13/