Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. III. Best possible local estimates of Riesz means of an arbitrary function from the class $L_2(G)$ for a self-adjoint extension of the Laplace operator
Differencialʹnye uravneniâ, Tome 7 (1971) no. 6, pp. 1036-1041
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1971_7_6_a10,
author = {V. A. Il'in},
title = {Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. {III.~Best} possible local estimates of {Riesz} means of an arbitrary function from the class $L_2(G)$ for a self-adjoint extension of the {Laplace} operator},
journal = {Differencialʹnye uravneni\^a},
pages = {1036--1041},
year = {1971},
volume = {7},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1971_7_6_a10/}
}
TY - JOUR AU - V. A. Il'in TI - Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. III. Best possible local estimates of Riesz means of an arbitrary function from the class $L_2(G)$ for a self-adjoint extension of the Laplace operator JO - Differencialʹnye uravneniâ PY - 1971 SP - 1036 EP - 1041 VL - 7 IS - 6 UR - http://geodesic.mathdoc.fr/item/DE_1971_7_6_a10/ LA - ru ID - DE_1971_7_6_a10 ER -
%0 Journal Article %A V. A. Il'in %T Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. III. Best possible local estimates of Riesz means of an arbitrary function from the class $L_2(G)$ for a self-adjoint extension of the Laplace operator %J Differencialʹnye uravneniâ %D 1971 %P 1036-1041 %V 7 %N 6 %U http://geodesic.mathdoc.fr/item/DE_1971_7_6_a10/ %G ru %F DE_1971_7_6_a10
V. A. Il'in. Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. III. Best possible local estimates of Riesz means of an arbitrary function from the class $L_2(G)$ for a self-adjoint extension of the Laplace operator. Differencialʹnye uravneniâ, Tome 7 (1971) no. 6, pp. 1036-1041. http://geodesic.mathdoc.fr/item/DE_1971_7_6_a10/