Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum
Differencialʹnye uravneniâ, Tome 7 (1971) no. 4, pp. 670-710
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1971_7_4_a9,
author = {V. A. Il'in and Sh. A. Alimov},
title = {Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. {I.} {Self-adjoint} extension of the {Laplace} operator with a point spectrum},
journal = {Differencialʹnye uravneni\^a},
pages = {670--710},
year = {1971},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1971_7_4_a9/}
}
TY - JOUR AU - V. A. Il'in AU - Sh. A. Alimov TI - Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum JO - Differencialʹnye uravneniâ PY - 1971 SP - 670 EP - 710 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/DE_1971_7_4_a9/ LA - ru ID - DE_1971_7_4_a9 ER -
%0 Journal Article %A V. A. Il'in %A Sh. A. Alimov %T Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum %J Differencialʹnye uravneniâ %D 1971 %P 670-710 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/DE_1971_7_4_a9/ %G ru %F DE_1971_7_4_a9
V. A. Il'in; Sh. A. Alimov. Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum. Differencialʹnye uravneniâ, Tome 7 (1971) no. 4, pp. 670-710. http://geodesic.mathdoc.fr/item/DE_1971_7_4_a9/