The generalized principle of localizing spectral decompositions that are connected with the Beltrami operator given in an arbitrary $n$-dimensional domain
Differencialʹnye uravneniâ, Tome 7 (1971) no. 11, pp. 2058-2065.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1971_7_11_a14,
     author = {G. A. Il'yushina},
     title = {The generalized principle of localizing spectral decompositions that are connected with the {Beltrami} operator given in an arbitrary $n$-dimensional domain},
     journal = {Differencialʹnye uravneni\^a},
     pages = {2058--2065},
     publisher = {mathdoc},
     volume = {7},
     number = {11},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1971_7_11_a14/}
}
TY  - JOUR
AU  - G. A. Il'yushina
TI  - The generalized principle of localizing spectral decompositions that are connected with the Beltrami operator given in an arbitrary $n$-dimensional domain
JO  - Differencialʹnye uravneniâ
PY  - 1971
SP  - 2058
EP  - 2065
VL  - 7
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1971_7_11_a14/
LA  - ru
ID  - DE_1971_7_11_a14
ER  - 
%0 Journal Article
%A G. A. Il'yushina
%T The generalized principle of localizing spectral decompositions that are connected with the Beltrami operator given in an arbitrary $n$-dimensional domain
%J Differencialʹnye uravneniâ
%D 1971
%P 2058-2065
%V 7
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1971_7_11_a14/
%G ru
%F DE_1971_7_11_a14
G. A. Il'yushina. The generalized principle of localizing spectral decompositions that are connected with the Beltrami operator given in an arbitrary $n$-dimensional domain. Differencialʹnye uravneniâ, Tome 7 (1971) no. 11, pp. 2058-2065. http://geodesic.mathdoc.fr/item/DE_1971_7_11_a14/