A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator
Differencialʹnye uravneniâ, Tome 6 (1970) no. 7, pp. 1159-1169
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1970_6_7_a1,
author = {V. A. Il'in},
title = {A generalized principle of localization for the {Riesz} means that correspond to an arbitrary selfadjoint nonnegative extension of the {Laplace} operator},
journal = {Differencialʹnye uravneni\^a},
pages = {1159--1169},
year = {1970},
volume = {6},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/}
}
TY - JOUR AU - V. A. Il'in TI - A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator JO - Differencialʹnye uravneniâ PY - 1970 SP - 1159 EP - 1169 VL - 6 IS - 7 UR - http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/ LA - ru ID - DE_1970_6_7_a1 ER -
%0 Journal Article %A V. A. Il'in %T A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator %J Differencialʹnye uravneniâ %D 1970 %P 1159-1169 %V 6 %N 7 %U http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/ %G ru %F DE_1970_6_7_a1
V. A. Il'in. A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator. Differencialʹnye uravneniâ, Tome 6 (1970) no. 7, pp. 1159-1169. http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/