A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator
Differencialʹnye uravneniâ, Tome 6 (1970) no. 7, pp. 1159-1169.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1970_6_7_a1,
     author = {V. A. Il'in},
     title = {A generalized principle of localization for the {Riesz} means that correspond to an arbitrary selfadjoint nonnegative extension of the {Laplace} operator},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1159--1169},
     publisher = {mathdoc},
     volume = {6},
     number = {7},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/}
}
TY  - JOUR
AU  - V. A. Il'in
TI  - A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator
JO  - Differencialʹnye uravneniâ
PY  - 1970
SP  - 1159
EP  - 1169
VL  - 6
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/
LA  - ru
ID  - DE_1970_6_7_a1
ER  - 
%0 Journal Article
%A V. A. Il'in
%T A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator
%J Differencialʹnye uravneniâ
%D 1970
%P 1159-1169
%V 6
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/
%G ru
%F DE_1970_6_7_a1
V. A. Il'in. A generalized principle of localization for the Riesz means that correspond to an arbitrary selfadjoint nonnegative extension of the Laplace operator. Differencialʹnye uravneniâ, Tome 6 (1970) no. 7, pp. 1159-1169. http://geodesic.mathdoc.fr/item/DE_1970_6_7_a1/