The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Cesàro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator
Differencialʹnye uravneniâ, Tome 6 (1970) no. 6, pp. 1086-1098
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1970_6_6_a13,
author = {G. I. Furletov},
title = {The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the {Ces\`aro} and {Riesz} methods of arbitrary positive order, and {Abel's} method, for {Fourier} series in fundamental function systems of {Laplace's} operator},
journal = {Differencialʹnye uravneni\^a},
pages = {1086--1098},
year = {1970},
volume = {6},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1970_6_6_a13/}
}
TY - JOUR AU - G. I. Furletov TI - The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Cesàro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator JO - Differencialʹnye uravneniâ PY - 1970 SP - 1086 EP - 1098 VL - 6 IS - 6 UR - http://geodesic.mathdoc.fr/item/DE_1970_6_6_a13/ LA - ru ID - DE_1970_6_6_a13 ER -
%0 Journal Article %A G. I. Furletov %T The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Cesàro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator %J Differencialʹnye uravneniâ %D 1970 %P 1086-1098 %V 6 %N 6 %U http://geodesic.mathdoc.fr/item/DE_1970_6_6_a13/ %G ru %F DE_1970_6_6_a13
G. I. Furletov. The equivalence of the $T_s(\alpha,\lambda_k)$ methods, $s>0$, the Cesàro and Riesz methods of arbitrary positive order, and Abel's method, for Fourier series in fundamental function systems of Laplace's operator. Differencialʹnye uravneniâ, Tome 6 (1970) no. 6, pp. 1086-1098. http://geodesic.mathdoc.fr/item/DE_1970_6_6_a13/