An application of the method of the contour integral to the solution of the Cauchy problem for a second order parabolic system
Differencialʹnye uravneniâ, Tome 6 (1970) no. 12, pp. 2286-2287
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1970_6_12_a20,
author = {M. L. Rasulov},
title = {An application of the method of the contour integral to the solution of the {Cauchy} problem for a second order parabolic system},
journal = {Differencialʹnye uravneni\^a},
pages = {2286--2287},
year = {1970},
volume = {6},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1970_6_12_a20/}
}
TY - JOUR AU - M. L. Rasulov TI - An application of the method of the contour integral to the solution of the Cauchy problem for a second order parabolic system JO - Differencialʹnye uravneniâ PY - 1970 SP - 2286 EP - 2287 VL - 6 IS - 12 UR - http://geodesic.mathdoc.fr/item/DE_1970_6_12_a20/ LA - ru ID - DE_1970_6_12_a20 ER -
%0 Journal Article %A M. L. Rasulov %T An application of the method of the contour integral to the solution of the Cauchy problem for a second order parabolic system %J Differencialʹnye uravneniâ %D 1970 %P 2286-2287 %V 6 %N 12 %U http://geodesic.mathdoc.fr/item/DE_1970_6_12_a20/ %G ru %F DE_1970_6_12_a20
M. L. Rasulov. An application of the method of the contour integral to the solution of the Cauchy problem for a second order parabolic system. Differencialʹnye uravneniâ, Tome 6 (1970) no. 12, pp. 2286-2287. http://geodesic.mathdoc.fr/item/DE_1970_6_12_a20/