The stability in the critical case of several pairs of pure imaginary roots for systems with aftereffect
Differencialʹnye uravneniâ, Tome 5 (1969) no. 9, pp. 1614-1625.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1969_5_9_a7,
     author = {V. A. Weber},
     title = {The stability in the critical case of several pairs of pure imaginary roots for systems with aftereffect},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1614--1625},
     publisher = {mathdoc},
     volume = {5},
     number = {9},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1969_5_9_a7/}
}
TY  - JOUR
AU  - V. A. Weber
TI  - The stability in the critical case of several pairs of pure imaginary roots for systems with aftereffect
JO  - Differencialʹnye uravneniâ
PY  - 1969
SP  - 1614
EP  - 1625
VL  - 5
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1969_5_9_a7/
LA  - ru
ID  - DE_1969_5_9_a7
ER  - 
%0 Journal Article
%A V. A. Weber
%T The stability in the critical case of several pairs of pure imaginary roots for systems with aftereffect
%J Differencialʹnye uravneniâ
%D 1969
%P 1614-1625
%V 5
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1969_5_9_a7/
%G ru
%F DE_1969_5_9_a7
V. A. Weber. The stability in the critical case of several pairs of pure imaginary roots for systems with aftereffect. Differencialʹnye uravneniâ, Tome 5 (1969) no. 9, pp. 1614-1625. http://geodesic.mathdoc.fr/item/DE_1969_5_9_a7/