Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1969_5_10_a12, author = {R. K. Kasumov}, title = {Asymptotic behavoir of the {Green's} function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$}, journal = {Differencialʹnye uravneni\^a}, pages = {1861--1874}, publisher = {mathdoc}, volume = {5}, number = {10}, year = {1969}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/} }
TY - JOUR AU - R. K. Kasumov TI - Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$ JO - Differencialʹnye uravneniâ PY - 1969 SP - 1861 EP - 1874 VL - 5 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/ LA - ru ID - DE_1969_5_10_a12 ER -
%0 Journal Article %A R. K. Kasumov %T Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$ %J Differencialʹnye uravneniâ %D 1969 %P 1861-1874 %V 5 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/ %G ru %F DE_1969_5_10_a12
R. K. Kasumov. Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$. Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1861-1874. http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/