Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$
Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1861-1874
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1969_5_10_a12,
author = {R. K. Kasumov},
title = {Asymptotic behavoir of the {Green's} function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$},
journal = {Differencialʹnye uravneni\^a},
pages = {1861--1874},
year = {1969},
volume = {5},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/}
}
TY - JOUR
AU - R. K. Kasumov
TI - Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$
JO - Differencialʹnye uravneniâ
PY - 1969
SP - 1861
EP - 1874
VL - 5
IS - 10
UR - http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/
LA - ru
ID - DE_1969_5_10_a12
ER -
%0 Journal Article
%A R. K. Kasumov
%T Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$
%J Differencialʹnye uravneniâ
%D 1969
%P 1861-1874
%V 5
%N 10
%U http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/
%G ru
%F DE_1969_5_10_a12
R. K. Kasumov. Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$. Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1861-1874. http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/