Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$
Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1861-1874.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1969_5_10_a12,
     author = {R. K. Kasumov},
     title = {Asymptotic behavoir of the {Green's} function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1861--1874},
     publisher = {mathdoc},
     volume = {5},
     number = {10},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/}
}
TY  - JOUR
AU  - R. K. Kasumov
TI  - Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$
JO  - Differencialʹnye uravneniâ
PY  - 1969
SP  - 1861
EP  - 1874
VL  - 5
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/
LA  - ru
ID  - DE_1969_5_10_a12
ER  - 
%0 Journal Article
%A R. K. Kasumov
%T Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$
%J Differencialʹnye uravneniâ
%D 1969
%P 1861-1874
%V 5
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/
%G ru
%F DE_1969_5_10_a12
R. K. Kasumov. Asymptotic behavoir of the Green's function of the equation $p(x)\frac{\partial u}{\partial t}=(-1)^{n+1}\frac{\partial^{2n}u}{\partial x^{2n}}$ as $t\to+0$, $x\to\infty$. Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1861-1874. http://geodesic.mathdoc.fr/item/DE_1969_5_10_a12/