The number of Frommer substitutions sufficient to reveal all ${\rm TO}$-curves of the equation $X(x,\,y)\,dy=Y(x,\,y)\,dx$
Differencialʹnye uravneniâ, Tome 4 (1968) no. 9, pp. 1560-1573
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1968_4_9_a1,
author = {A. F. Andreev and T. V. Stepanova},
title = {The number of {Frommer} substitutions sufficient to reveal all ${\rm TO}$-curves of the equation $X(x,\,y)\,dy=Y(x,\,y)\,dx$},
journal = {Differencialʹnye uravneni\^a},
pages = {1560--1573},
year = {1968},
volume = {4},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1968_4_9_a1/}
}
TY - JOUR
AU - A. F. Andreev
AU - T. V. Stepanova
TI - The number of Frommer substitutions sufficient to reveal all ${\rm TO}$-curves of the equation $X(x,\,y)\,dy=Y(x,\,y)\,dx$
JO - Differencialʹnye uravneniâ
PY - 1968
SP - 1560
EP - 1573
VL - 4
IS - 9
UR - http://geodesic.mathdoc.fr/item/DE_1968_4_9_a1/
LA - ru
ID - DE_1968_4_9_a1
ER -
%0 Journal Article
%A A. F. Andreev
%A T. V. Stepanova
%T The number of Frommer substitutions sufficient to reveal all ${\rm TO}$-curves of the equation $X(x,\,y)\,dy=Y(x,\,y)\,dx$
%J Differencialʹnye uravneniâ
%D 1968
%P 1560-1573
%V 4
%N 9
%U http://geodesic.mathdoc.fr/item/DE_1968_4_9_a1/
%G ru
%F DE_1968_4_9_a1
A. F. Andreev; T. V. Stepanova. The number of Frommer substitutions sufficient to reveal all ${\rm TO}$-curves of the equation $X(x,\,y)\,dy=Y(x,\,y)\,dx$. Differencialʹnye uravneniâ, Tome 4 (1968) no. 9, pp. 1560-1573. http://geodesic.mathdoc.fr/item/DE_1968_4_9_a1/