Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1968_4_12_a13, author = {L. A. Cherkas}, title = {The singular cycles of the equation $\frac{dy}{dx}=\frac{P(x,y)}{xy}$, where $P(x,y)$, is a second degree polynomial}, journal = {Differencialʹnye uravneni\^a}, pages = {2281--2285}, publisher = {mathdoc}, volume = {4}, number = {12}, year = {1968}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1968_4_12_a13/} }
TY - JOUR AU - L. A. Cherkas TI - The singular cycles of the equation $\frac{dy}{dx}=\frac{P(x,y)}{xy}$, where $P(x,y)$, is a second degree polynomial JO - Differencialʹnye uravneniâ PY - 1968 SP - 2281 EP - 2285 VL - 4 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1968_4_12_a13/ LA - ru ID - DE_1968_4_12_a13 ER -
%0 Journal Article %A L. A. Cherkas %T The singular cycles of the equation $\frac{dy}{dx}=\frac{P(x,y)}{xy}$, where $P(x,y)$, is a second degree polynomial %J Differencialʹnye uravneniâ %D 1968 %P 2281-2285 %V 4 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1968_4_12_a13/ %G ru %F DE_1968_4_12_a13
L. A. Cherkas. The singular cycles of the equation $\frac{dy}{dx}=\frac{P(x,y)}{xy}$, where $P(x,y)$, is a second degree polynomial. Differencialʹnye uravneniâ, Tome 4 (1968) no. 12, pp. 2281-2285. http://geodesic.mathdoc.fr/item/DE_1968_4_12_a13/