Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument
Differencialʹnye uravneniâ, Tome 4 (1968) no. 10, pp. 1774-1784.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1968_4_10_a2,
     author = {P. S. Gromova and A. M. Zverkin},
     title = {Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1774--1784},
     publisher = {mathdoc},
     volume = {4},
     number = {10},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/}
}
TY  - JOUR
AU  - P. S. Gromova
AU  - A. M. Zverkin
TI  - Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument
JO  - Differencialʹnye uravneniâ
PY  - 1968
SP  - 1774
EP  - 1784
VL  - 4
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/
LA  - ru
ID  - DE_1968_4_10_a2
ER  - 
%0 Journal Article
%A P. S. Gromova
%A A. M. Zverkin
%T Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument
%J Differencialʹnye uravneniâ
%D 1968
%P 1774-1784
%V 4
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/
%G ru
%F DE_1968_4_10_a2
P. S. Gromova; A. M. Zverkin. Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument. Differencialʹnye uravneniâ, Tome 4 (1968) no. 10, pp. 1774-1784. http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/