Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument
Differencialʹnye uravneniâ, Tome 4 (1968) no. 10, pp. 1774-1784
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1968_4_10_a2,
author = {P. S. Gromova and A. M. Zverkin},
title = {Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument},
journal = {Differencialʹnye uravneni\^a},
pages = {1774--1784},
year = {1968},
volume = {4},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/}
}
TY - JOUR AU - P. S. Gromova AU - A. M. Zverkin TI - Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument JO - Differencialʹnye uravneniâ PY - 1968 SP - 1774 EP - 1784 VL - 4 IS - 10 UR - http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/ LA - ru ID - DE_1968_4_10_a2 ER -
%0 Journal Article %A P. S. Gromova %A A. M. Zverkin %T Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument %J Differencialʹnye uravneniâ %D 1968 %P 1774-1784 %V 4 %N 10 %U http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/ %G ru %F DE_1968_4_10_a2
P. S. Gromova; A. M. Zverkin. Trigonometric series whose sum is a continuous unbounded function on the real axis and is a solution of an equation with deviating argument. Differencialʹnye uravneniâ, Tome 4 (1968) no. 10, pp. 1774-1784. http://geodesic.mathdoc.fr/item/DE_1968_4_10_a2/