Bounded and oscillatory solutions of the system $\ddot x+g(x,\,\dot x)=\bar 0$
Differencialʹnye uravneniâ, Tome 3 (1967) no. 9, pp. 1437-1449.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1967_3_9_a2,
     author = {L. V. Khokhlova},
     title = {Bounded and oscillatory solutions of the system $\ddot x+g(x,\,\dot x)=\bar 0$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1437--1449},
     publisher = {mathdoc},
     volume = {3},
     number = {9},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1967_3_9_a2/}
}
TY  - JOUR
AU  - L. V. Khokhlova
TI  - Bounded and oscillatory solutions of the system $\ddot x+g(x,\,\dot x)=\bar 0$
JO  - Differencialʹnye uravneniâ
PY  - 1967
SP  - 1437
EP  - 1449
VL  - 3
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1967_3_9_a2/
LA  - ru
ID  - DE_1967_3_9_a2
ER  - 
%0 Journal Article
%A L. V. Khokhlova
%T Bounded and oscillatory solutions of the system $\ddot x+g(x,\,\dot x)=\bar 0$
%J Differencialʹnye uravneniâ
%D 1967
%P 1437-1449
%V 3
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1967_3_9_a2/
%G ru
%F DE_1967_3_9_a2
L. V. Khokhlova. Bounded and oscillatory solutions of the system $\ddot x+g(x,\,\dot x)=\bar 0$. Differencialʹnye uravneniâ, Tome 3 (1967) no. 9, pp. 1437-1449. http://geodesic.mathdoc.fr/item/DE_1967_3_9_a2/