The structure of a solution of the equation $u'=U_0(\nu)u+\sum_{n=1}^\infty(\nu)u^{1+\alpha_n}\equiv U(u,\nu)$ in a small
Differencialʹnye uravneniâ, Tome 3 (1967) no. 6, pp. 1029-1030
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1967_3_6_a16,
author = {A. N. Erugin},
title = {The structure of a solution of the equation $u'=U_0(\nu)u+\sum_{n=1}^\infty(\nu)u^{1+\alpha_n}\equiv U(u,\nu)$ in a small},
journal = {Differencialʹnye uravneni\^a},
pages = {1029--1030},
year = {1967},
volume = {3},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1967_3_6_a16/}
}
TY - JOUR
AU - A. N. Erugin
TI - The structure of a solution of the equation $u'=U_0(\nu)u+\sum_{n=1}^\infty(\nu)u^{1+\alpha_n}\equiv U(u,\nu)$ in a small
JO - Differencialʹnye uravneniâ
PY - 1967
SP - 1029
EP - 1030
VL - 3
IS - 6
UR - http://geodesic.mathdoc.fr/item/DE_1967_3_6_a16/
LA - ru
ID - DE_1967_3_6_a16
ER -
A. N. Erugin. The structure of a solution of the equation $u'=U_0(\nu)u+\sum_{n=1}^\infty(\nu)u^{1+\alpha_n}\equiv U(u,\nu)$ in a small. Differencialʹnye uravneniâ, Tome 3 (1967) no. 6, pp. 1029-1030. http://geodesic.mathdoc.fr/item/DE_1967_3_6_a16/