Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2021_16_a5, author = {M. S. Sultanakhmedov and R. M. Gadzhimirzaev}, title = {Representation of the solution of the {Cauchy} problem for a difference equation by a {Fourier} series in {Meixner} - {Sobolev} polynomials}, journal = {Daghestan Electronic Mathematical Reports}, pages = {74--82}, publisher = {mathdoc}, volume = {16}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a5/} }
TY - JOUR AU - M. S. Sultanakhmedov AU - R. M. Gadzhimirzaev TI - Representation of the solution of the Cauchy problem for a difference equation by a Fourier series in Meixner - Sobolev polynomials JO - Daghestan Electronic Mathematical Reports PY - 2021 SP - 74 EP - 82 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a5/ LA - ru ID - DEMR_2021_16_a5 ER -
%0 Journal Article %A M. S. Sultanakhmedov %A R. M. Gadzhimirzaev %T Representation of the solution of the Cauchy problem for a difference equation by a Fourier series in Meixner - Sobolev polynomials %J Daghestan Electronic Mathematical Reports %D 2021 %P 74-82 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2021_16_a5/ %G ru %F DEMR_2021_16_a5
M. S. Sultanakhmedov; R. M. Gadzhimirzaev. Representation of the solution of the Cauchy problem for a difference equation by a Fourier series in Meixner - Sobolev polynomials. Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 74-82. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a5/
[1] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | MR | Zbl
[2] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72 | MR | Zbl
[3] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh, Izd-vo Dagestanskogo gos. ped. un-ta, Makhachkala, 1997
[4] Nikiforov A.F., Suslov S.K., Uvarov V.B., Klassicheskie ortogonalnye mnogochleny diskretnoi peremennoi, Nauka, M., 1985 | MR
[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974