Reconstruction of a vector field from the data of its longitudinal and transverse ray transforms
Daghestan Electronic Mathematical Reports, no. 16 (2021), pp. 62-73
Cet article a éte moissonné depuis la source Math-Net.Ru
An algorithm for the complete reconstruction of a vector field in three-dimensional Euclidean space based on incomplete integral data of a longitudinal and a transverse ray transforms is constructed. From of data of a longitudinal ray transform given on the family of straight lines intersecting a piecewise smooth curve, the solenoidal part of the vector field is constructed, and from of data of a transverse ray transform, the potential of an unknown field is constructed. The problem of reconstruction is also solved in the case of a family of lines intersecting a curve at infinity.
Mots-clés :
Radon transformation, transverse ray transform, inversion formula.
Keywords: longitudinal ray transform
Keywords: longitudinal ray transform
@article{DEMR_2021_16_a4,
author = {Z. G. Medzhidov},
title = {Reconstruction of a vector field from the data of its longitudinal and transverse ray transforms},
journal = {Daghestan Electronic Mathematical Reports},
pages = {62--73},
year = {2021},
number = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a4/}
}
TY - JOUR AU - Z. G. Medzhidov TI - Reconstruction of a vector field from the data of its longitudinal and transverse ray transforms JO - Daghestan Electronic Mathematical Reports PY - 2021 SP - 62 EP - 73 IS - 16 UR - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a4/ LA - ru ID - DEMR_2021_16_a4 ER -
Z. G. Medzhidov. Reconstruction of a vector field from the data of its longitudinal and transverse ray transforms. Daghestan Electronic Mathematical Reports, no. 16 (2021), pp. 62-73. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a4/
[1] Palamodov V.P., “On reconstruction of strain fields from tomographic data”, ID 85002, Inverse Problems, 31:8 (2015), 12 | DOI | MR | Zbl
[2] Palamodov V.P., “Reconstruction of a differential form from Doppler transform”, SIAM J. Math. Anal, 2009, no. 41, 1713–1720 | DOI | MR | Zbl
[3] Medzhidov Z.G., “Obraschenie luchevogo preobrazovaniya tenzornykh polei s beskonechno udalennymi istochnikami”, Vestnik DGU, 2015, no. 1, 19-26
[4] Medzhidov Z.G., “Formuly obrascheniya tenzornoi tomografii po nepolnym dannym”, DEMI, 2014, no. 2, 75-86
[5] Medzhidov Z.G., “O vosstanovlenii tenzornogo polya vtorogo ranga s nulevym sledom po nepolnym dannym”, DEMI, 2020, no. 14, 38-47