Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient
Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 51-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Local characteristics of mathematical models of strongly inhomogeneous media are usually described by functions of the form $a(\varepsilon^{-1} x)$, $b(x,\varepsilon^{-1} x)$, $c(\varepsilon^{-1} x,\delta^{-1} x)$, $d(\varepsilon^{-1} x,\delta^{-1} x,\gamma^{-1} x)$, etc., where $\varepsilon$, $\delta$, $\gamma,\ldots>0$ — small parameters, while functions $a$, $b$, $c$, $d$, $\ldots$ have an ordered structure (for example, they are periodic in variables $y=\varepsilon^{-1} x$, $z=\delta^{-1} x$, etc.). Consequently, the corresponding mathematical models are differential equations with rapidly oscillating coefficients. This work is devoted to estimates of the averaging error. We study the generalized Beltrami equation with a locally periodic coefficient $\mu(x,\varepsilon^{-1} x)$.
Keywords: Beltrami equation, averaging, asymptotic methods.
@article{DEMR_2021_16_a3,
     author = {M. M. Sirazhudinov and L. M. Dzhabrailova},
     title = {Operator estimates for the averaging of the {Riemann-Hilbert} problem for the {Beltrami} equation with a locally periodic coefficient},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a3/}
}
TY  - JOUR
AU  - M. M. Sirazhudinov
AU  - L. M. Dzhabrailova
TI  - Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient
JO  - Daghestan Electronic Mathematical Reports
PY  - 2021
SP  - 51
EP  - 61
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a3/
LA  - ru
ID  - DEMR_2021_16_a3
ER  - 
%0 Journal Article
%A M. M. Sirazhudinov
%A L. M. Dzhabrailova
%T Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient
%J Daghestan Electronic Mathematical Reports
%D 2021
%P 51-61
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2021_16_a3/
%G ru
%F DEMR_2021_16_a3
M. M. Sirazhudinov; L. M. Dzhabrailova. Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient. Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 51-61. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a3/