Stability of systems of Ito linear differential equations with delays
Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 24-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The questions of instant stability of systems of linear differential equations Ito with delays based on the theory of positively reversible matrices are investigated. The ideas and methods developed by N. V. Azbelev and his students to investigate the sustainability of deterministic linear functional–differential equations are used for this. Are brought sufficient conditions $2p$–stability $(1\le p \infty)$ systems of linear differential Ito equations with delays in terms of positive reversibility of the matrices, built according to the parameters of the source system. The fulfillment of these conditions for specific equations is checked.
Keywords: solution stability, Ito equations with delays, model equation method.
@article{DEMR_2021_16_a2,
     author = {R. I. Kadiev},
     title = {Stability of systems of {Ito} linear differential equations with delays},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {24--50},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a2/}
}
TY  - JOUR
AU  - R. I. Kadiev
TI  - Stability of systems of Ito linear differential equations with delays
JO  - Daghestan Electronic Mathematical Reports
PY  - 2021
SP  - 24
EP  - 50
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a2/
LA  - ru
ID  - DEMR_2021_16_a2
ER  - 
%0 Journal Article
%A R. I. Kadiev
%T Stability of systems of Ito linear differential equations with delays
%J Daghestan Electronic Mathematical Reports
%D 2021
%P 24-50
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2021_16_a2/
%G ru
%F DEMR_2021_16_a2
R. I. Kadiev. Stability of systems of Ito linear differential equations with delays. Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 24-50. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a2/

[1] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[2] Tsarkov E.F., Sluchainye vozmuscheniya differentsionalno-funktsionalnykh uravnenii, Zinate, Riga, 1989

[3] Mao X., Stochastic Differential Equations and Applications, Horwood Publishing Itd, Chichester, 1997, 360 pp. | MR | Zbl

[4] Mohammed S.-E.F., “Stochastic Functional Differential Equations With Memory. Theory, Examples and Applications”, Proceeding of The Sixth on Stochastic Analysis (Geilo, Norway), 1996, 1–91 | MR | Zbl

[5] Azbelev N.V., Maksimov V.P., Rakhmatulina L.F., Introduction to the Theory of Functional Differential Equations. Methods and Applications. New, Hindawi, New York, 2007, 318 pp. | MR

[6] Azbelev N.V., Simonov P.M., Stability of Differential Equations With Aftereffect, CRC Press, London, 2002, 240 pp. | MR

[7] Kadiev R.I., “Dostatochnye usloviya ustoichivosti stokhasticheskikh sistem s posledeistviem”, Differents. uravneniya, 30:4 (1994), 555–564 | MR | Zbl

[8] Kadiev R.I., Ponosov A.V., “Ustoichivost lineinykh funktsionalno-differentsialnykh uravnenii pri postoyanno deistvuyuschikh vozmuscheniyakh”, Differents. uravneniya, 28:2 (1992), 198–207 | MR

[9] Kadiev R.I., Ponosov A.V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s posledeistviem”, Differents. uravneniya, 43:7 (2007), 879–885 | MR | Zbl

[10] Kadiev R.I., Ponosov A.V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Differents. uravneniya, 46:4 (2010), 486–498 | MR | Zbl

[11] Kadiev R.I., Simanov P.M., “Initial date stability and admissibility of spaces for Ito linear difference equations”, Mathematica bohemica, 2017, no. 2, 185–196 | DOI | MR | Zbl

[12] Kadiev R.I., Ponosov A.V., “Exponential stability of linear stochastic differential equations with bounded delay and the W-transform”, Electronic Journal of Qualitative Theory of Differential Equations, 2008, no. 23, 1–14 | DOI | MR

[13] Kadiev R., Ponosov A., “Partial stability of stochastic functional differential equations and the W-transform”, The International Journal of Dynamics of Continuous, Discrete and Impulsive Systems (DCDIS) Series A: Mathematical Analysis, 21:1 (2014), 1–35 | MR | Zbl

[14] Kadiev R.I., Ponosov A.V., “Polozhitelnaya obratimost matrits i eksponentsialnaya ustoichivost impulsnykh sistem lineinykh differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Izv. Vuzov. Matematika, 2020, no. 10, 3–8

[15] Kadiev R.I., Ponosov A.V., “Polozhitelnaya obratimost matrits ustoichivost differentsialnykh uravnenii Ito s zapazdyvaniyami”, Differents. uravneniya. Minsk, 53:5 (2017), 579–590 | Zbl

[16] Kadiev R.I., Ponosov A.V., “Ustoichivost reshenii nelineinykh funktsionalno-differentsialnykh uravnenii ITO s impulsnymi vozdeistviyami po lineinomu priblizheniyu”, Differents. uravneniya. Minsk, 49:8 (2013), 963–970 | MR | Zbl

[17] Liptser R.Sh., Shiryaev A.N., Teoriya martingalov, Nauka, M., 1986 | MR

[18] Bellman R., Vvedenie v teoriyu matrits, Nauka, M.

[19] Kadiev R.I., “Suschestvovanie i edinstvennost resheniya zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii po semimartingalu”, Izv. Vuzov. Matematika, 1995, no. 10, 35–40