Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2021_16_a1, author = {M. K. Ramazanov and A. K. Murtazaev}, title = {Computer simulation of a two-dimensional {Potts} model with competing exchange interactions}, journal = {Daghestan Electronic Mathematical Reports}, pages = {16--23}, publisher = {mathdoc}, volume = {16}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/} }
TY - JOUR AU - M. K. Ramazanov AU - A. K. Murtazaev TI - Computer simulation of a two-dimensional Potts model with competing exchange interactions JO - Daghestan Electronic Mathematical Reports PY - 2021 SP - 16 EP - 23 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/ LA - ru ID - DEMR_2021_16_a1 ER -
%0 Journal Article %A M. K. Ramazanov %A A. K. Murtazaev %T Computer simulation of a two-dimensional Potts model with competing exchange interactions %J Daghestan Electronic Mathematical Reports %D 2021 %P 16-23 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/ %G ru %F DEMR_2021_16_a1
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of a two-dimensional Potts model with competing exchange interactions. Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 16-23. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/
[1] Dotsenko V. S., “Critical phenomena and quenched disorder”, Phys. Usp., 38:5 (1995), 457–496 | DOI
[2] Korshunov S. E., “Phase transitions in two-dimensional systems with continuous degeneracy”, Phys. Usp., 49:3 (2006), 225–262 | DOI
[3] Wu F. Y., “The Potts model”, Rev. Mod. Phys., 54 (1982), 235–268 | DOI | MR
[4] Cardy J. L., Nauenberg M., Scalapino D. J., “Scaling theory of the Potts-model multicritical point”, Phys. Rev. B, 22 (1980), 2560–2568 | DOI | MR
[5] Ramazanov M. K., Murtazaev A. K., Magomedov M. A., “Phase diagrams and ground-state structures of the Potts model on a triangular lattice”, Physica A, 521 (2019), 543–550 | DOI
[6] Ramazanov M. K., Murtazaev A. K., “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions”, JETP Lett., 101:10 (2015), 714–718 | DOI
[7] Ramazanov M.K., Murtazaev A.K., “Fazovye perekhody i kriticheskie svoistva v antiferromagnitnoi modeli Geizenberga na sloistoi kubicheskoi reshetke”, Pisma v ZhETF, 106:2 (2017), 72–77 | MR
[8] Murtazaev A.K., Magomedov M.A., Ramazanov M.K., “Fazovaya diagramma i struktura osnovnogo sostoyaniya antiferromagnitnoi modeli Izinga na ob'emno-tsentrirovannoi kubicheskoi reshetke”, Pisma v ZhETF, 107:4 (2018), 265–269
[9] Ramazanov M.K., Murtazaev A.K., “Kompyuternoe modelirovanie kriticheskikh svoistv frustrirovannoi modeli Izinga”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 26–32
[10] Murtazaev A. K., Rizvanova T. R., Ramazanov M. K., Magomedov M. A., “Fazovye perekhody i termodinamicheskie svoistva modeli Pottsa s chislom sostoyanii spina $q = 4$ na reshetke Kagome”, FTT, 2020:8 (2020), 1278–1282
[11] Ramazanov M.K., Murtazaev A.K., Magomedov M.A., Mazagaeva M.K., “Issledovanie fazovykh perekhodov i termodinamicheskikh svoistv modeli Pottsa s $q=4$ na geksagonalnoi reshetke s vzaimodeistviyami vtorykh blizhaishikh sosedei”, FTT, 2020:3 (2020), 442–446