Computer simulation of a two-dimensional Potts model with competing exchange interactions
Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 16-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phase transitions and thermodynamic properties of the two-dimensional Potts model with the number of spin states $q=4$ on a hexagonal lattice with competing exchange interactions have been investigated on the basis of the Wang-Landau algorithm by the Monte Carlo method. It is shown that taking into account the antiferromagnetic interactions of the next-nearest neighbors leads to a violation of the magnetic ordering and to the appearance of frustration.
Keywords: Monte Carlo method, Wang-Landau algorithm, frustration.
@article{DEMR_2021_16_a1,
     author = {M. K. Ramazanov and A. K. Murtazaev},
     title = {Computer simulation of a two-dimensional {Potts} model with competing exchange interactions},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {16--23},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/}
}
TY  - JOUR
AU  - M. K. Ramazanov
AU  - A. K. Murtazaev
TI  - Computer simulation of a two-dimensional Potts model with competing exchange interactions
JO  - Daghestan Electronic Mathematical Reports
PY  - 2021
SP  - 16
EP  - 23
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/
LA  - ru
ID  - DEMR_2021_16_a1
ER  - 
%0 Journal Article
%A M. K. Ramazanov
%A A. K. Murtazaev
%T Computer simulation of a two-dimensional Potts model with competing exchange interactions
%J Daghestan Electronic Mathematical Reports
%D 2021
%P 16-23
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/
%G ru
%F DEMR_2021_16_a1
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of a two-dimensional Potts model with competing exchange interactions. Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 16-23. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/

[1] Dotsenko V. S., “Critical phenomena and quenched disorder”, Phys. Usp., 38:5 (1995), 457–496 | DOI

[2] Korshunov S. E., “Phase transitions in two-dimensional systems with continuous degeneracy”, Phys. Usp., 49:3 (2006), 225–262 | DOI

[3] Wu F. Y., “The Potts model”, Rev. Mod. Phys., 54 (1982), 235–268 | DOI | MR

[4] Cardy J. L., Nauenberg M., Scalapino D. J., “Scaling theory of the Potts-model multicritical point”, Phys. Rev. B, 22 (1980), 2560–2568 | DOI | MR

[5] Ramazanov M. K., Murtazaev A. K., Magomedov M. A., “Phase diagrams and ground-state structures of the Potts model on a triangular lattice”, Physica A, 521 (2019), 543–550 | DOI

[6] Ramazanov M. K., Murtazaev A. K., “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions”, JETP Lett., 101:10 (2015), 714–718 | DOI

[7] Ramazanov M.K., Murtazaev A.K., “Fazovye perekhody i kriticheskie svoistva v antiferromagnitnoi modeli Geizenberga na sloistoi kubicheskoi reshetke”, Pisma v ZhETF, 106:2 (2017), 72–77 | MR

[8] Murtazaev A.K., Magomedov M.A., Ramazanov M.K., “Fazovaya diagramma i struktura osnovnogo sostoyaniya antiferromagnitnoi modeli Izinga na ob'emno-tsentrirovannoi kubicheskoi reshetke”, Pisma v ZhETF, 107:4 (2018), 265–269

[9] Ramazanov M.K., Murtazaev A.K., “Kompyuternoe modelirovanie kriticheskikh svoistv frustrirovannoi modeli Izinga”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 26–32

[10] Murtazaev A. K., Rizvanova T. R., Ramazanov M. K., Magomedov M. A., “Fazovye perekhody i termodinamicheskie svoistva modeli Pottsa s chislom sostoyanii spina $q = 4$ na reshetke Kagome”, FTT, 2020:8 (2020), 1278–1282

[11] Ramazanov M.K., Murtazaev A.K., Magomedov M.A., Mazagaeva M.K., “Issledovanie fazovykh perekhodov i termodinamicheskikh svoistv modeli Pottsa s $q=4$ na geksagonalnoi reshetke s vzaimodeistviyami vtorykh blizhaishikh sosedei”, FTT, 2020:3 (2020), 442–446