Computer simulation of a two-dimensional Potts model with competing exchange interactions
Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 16-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The phase transitions and thermodynamic properties of the two-dimensional Potts model with the number of spin states $q=4$ on a hexagonal lattice with competing exchange interactions have been investigated on the basis of the Wang-Landau algorithm by the Monte Carlo method. It is shown that taking into account the antiferromagnetic interactions of the next-nearest neighbors leads to a violation of the magnetic ordering and to the appearance of frustration.
Keywords: Monte Carlo method, Wang-Landau algorithm, frustration.
@article{DEMR_2021_16_a1,
     author = {M. K. Ramazanov and A. K. Murtazaev},
     title = {Computer simulation of a two-dimensional {Potts} model with competing exchange interactions},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {16--23},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/}
}
TY  - JOUR
AU  - M. K. Ramazanov
AU  - A. K. Murtazaev
TI  - Computer simulation of a two-dimensional Potts model with competing exchange interactions
JO  - Daghestan Electronic Mathematical Reports
PY  - 2021
SP  - 16
EP  - 23
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/
LA  - ru
ID  - DEMR_2021_16_a1
ER  - 
%0 Journal Article
%A M. K. Ramazanov
%A A. K. Murtazaev
%T Computer simulation of a two-dimensional Potts model with competing exchange interactions
%J Daghestan Electronic Mathematical Reports
%D 2021
%P 16-23
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/
%G ru
%F DEMR_2021_16_a1
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of a two-dimensional Potts model with competing exchange interactions. Daghestan Electronic Mathematical Reports, Tome 16 (2021), pp. 16-23. http://geodesic.mathdoc.fr/item/DEMR_2021_16_a1/